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Normal Functionals and Spaces of Weights 
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It is shown that the cone of positive normal functionals on a hypergraph d may 
be substantially larger than the cone of positive weights on d .  For a semiclassical 
hypergraph d the two cones coincide if and only if the number of edges of d 
of cardinality >2 is finite. This disproves an earlier statement of T. A. Cook, 

1. I N T R O D U C T I O N  

Cook (1985) raised the question of whether the positive weights on a 
hypergraph ~ coincide with the positive normal functionals in the bidual 
of  J ( d ) ,  the space of  Jordan weights on d .  (Unexplained notions are 
discussed below.) He suggested [Proposition 9 of  Cook (1985)] that the 
answer is positive. In this note we reconsider this problem and show (see 
Example 4 and Theorem 2) that this proposit ion is false. 

This note is organized as follows: We briefly describe cases (Examples 
1-3) where the answer to Cook 's  question is affirmative. These examples 
suggest a place to look for a counterexample (Example 4). In this example 
we construct a nonreflexive ordered Banach space for which all functionals 
in the bidual are normal.  

F rom the existence of this example it follows (Theorems 1 and 2) that 
there is a large class of  ordered Banach spaces V for which the subspace of 
normal  functionals in the bidual of  V does not coincide width V. In particular, 
Theorem 2 states that the space of Jordan weights on a semiclassical hyper- 
graph (a hypergraph whose edges are pairwise disjoint) coincides with the 
space of  normal  functionals if and only if the number  of  edges of  cardinality 
>2 is finite. 
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2. NORMAL FUNCTIONALS 

Let V be a Banach space with a partial order <. The Banach space 
dual and bidual of V will be denoted by V* and V**, respectively. The 
cone of positive elements in V will be denoted by V+; similarly, 
V* = {f~ V* : f (V+)  c R +  }, and V** = {~bE V**: ~b (V*) c R +  }. Elements 
of V+, V*,  or V** will be called positive. 

A net (f~)~D in V* is said to be increasing if whenever fil <fi2 
(fi~, fiz~D), then f~-f~,s  V*. We say that a linear functional ~b~ V** is 
normal if for every increasing net (f~)a~D in V*, converging weak* to 
f ,  ~b(f)=lima~D ~b(f~). 

By V*~* (respectively ** V+.N) we denote the subset of V** of normal 
(respectively positive normal) functionals. It is easy to see that V** is a 
linear subspace of V** and that V*+* is a positive subset of V**. 

Let Z: V ~ V** denote the canonical embedding of V into V**. We 
will identify V and V+ with their images z(V) and z(V+) in V**. Since Z 
preserves positivity and since every x~ V is weak* continuous on V*, we 
have that V= V~v* and V+ c V+.N. 

Each ordered Banach space V occurring in our examples will be a base 
norm space (Alfsen, 1971 ; Asimov and Ellis, 1980), i.e., a space whose unit 
ball coincides with the absolute convex hull of the set {x~ V+ : [[x[[ = 1}. 

Example 1. If V=I~(X) for some nonempty set X, then V= V**. 
Recall that 11(2) ----- {/: X --, R: Itf[[ =~x~X [f(x)] < oe}. The canonical 

linear order _< o n  l l ( X )  is the pointwise order, i.e., f<_g ,*~f(x)<g(x) for 
all xeX. It is well known that V* is isometrically isomorphic to l~o(X) and 
that V** is isometrically isomorphic to the space of bounded, finitely addi- 
tive measures on 2 x. 

To see that V= V**, let q~s V**. Since r  q~ + ~b2, where r s Vand ~b2 
is purely finitely additive [i.e., ~b2(F) = 0 i f F i s  a finite subset of X], it suffices 
to show that every purely finitely additive normal measure q~ is the 0-measure. 

Let B c X  be infinite, and @ the directed set of finite subsets of B, 
ordered by set inclusion. Then (1F)F~ is an increasing net in lo~(X) that 
converges weak* to 18. Since ~b is normal, ~b(B)=limF~ ~b(F)=0. There- 
fore, q~= 0, and the assertion is proved. [] 

Example 2. Let A be a v o n  Neumann algebra and A~ its self-adjoint 
part. The positive elements in A~, foirn a generating cone in A~. Let V 
denote the ordered Banach space predual of A~,, so that V* =A~a. It is a 
standard result in the theory of von Neumann algebras (Pedersen, 1979; 
Sakai, 1971) that V**= V. In particular, these results apply to the space 
N(H)  of bounded operators on a complex Hilbert space H, which is a v o n  
Neumann algebra whose predual is the space of trace-class operators on H. 
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3. SPACES OF WEIGHTS 

A hypergraph (or quas#nanual) is a pair d = (X, (9), where X is a non- 
empty set and (9 is a covering of X by nonempty subsets of X. The elements 
of X and (9 are called vertices and edges, respectively, of d .  A positive weight 
on the hypergraph d is a map p: X ~ R+ satisfying ~_E/.t(x) < oe for all 
E~(9 and 

p(x) = ~ p(x) for all E, Fe  (9 
x ~ E  x ~ F  

Let I]Pll denote the common value of ~x~eP(x), Ee(9. 
Let K ( d )  denote the set of all positive weights on d ,  and J ( d ) - -  

{v -p :  p, veK(d)}.  Elements of j ( d )  are called Jordan weights on d .  
Let ~ ( ~ ) =  {peK(d): [[#[I = 1 } be the probability weights on d .  A natural 
partial order on ~ ( d )  is given by p<_ v ~  p(x) <_ v(x) for all x~X. For every 
) ~ J ( d ) ,  define 

lIXIl~=inf{llPl] + Hall : A. = a - p ,  p, treK(d)} 

Clear ly ,  IIt~l18 = IIt~l[ for all peK(d).  It is easy to verify that [1" klB is a norm 
on J ( z r  (base norm) and that the I1" lie-unit ball in J ( d )  is equal to the 
set conv(f~(d) ~ - f~(d)) .  

Cook (1985) showed that ( J ( d ) ,  11"118) is a Banach space and that 
every bounded increasing net (f~)~D in J ( d ) *  converges weak* to its least 
upper bound in (J (d)* ,  <), the ordered dual of j ( d ) .  

A hypergraph d = (X, (9) is said to be classical if (9 =: {X} and semiclass- 
ical if (9 is a partition of X. Note that for every classical hypergraph d = 
(X, {X}), the ordered Banach space J ( d )  is identical to the space 
(I1(X), I1" I[, <) discussed in Example 1. For a classical hypergraph d we 
thus have J ( d ) =  j ( d ) * * .  

Another norm on J ( d )  is the variation norm, defined by 

,,,~l,o--sup { , ~  I~ (x), : Ee(9} 

For semiclassical hypergraphs, the norms [l" 118 and N" I[o coincide, so we 
omit the subscript and refer to II" II. [Note, however, that there exist hyper- 
graphs d for which ( J ( d ) ,  II" 11o) is not complete (Schindler, 1986).] 

Example 3. Every Hilbert space H gives rise to a hypergraph as follows: 
X is the collection of all one-dimensional subspaces of H and (9 is the 
collection of all maximal orthogonal subsets of X. [The pair d u  = (X, (9) is 
called the frame manual of H.] For Hilbert spaces of dimension ~2, Gleason's 
theorem (Gleason, 1957) provides an isometric order isomorphism from 



1340 Hagler and Schindler 

J ( d ~ / )  onto the ordered Banach space Vof self-adjoint trace class operators 
o n  H .  

Thus, according to Example 2, j ( d H ) * *  = j ( d H ) .  If  dim(H) = 2, then 
Gleason's theorem does not apply, and, as the following example shows, 

J ( ~ . ) ~ *  = j ( d . ) * * .  

Example 4. Let A be an arbitrary nonempty set, 

X = {(x, i): x~A, i=  1, 2} 

Letting Ex = {(x, 1), (x, 2)} for every xeA, and (9--- {Ex: xeA}, we obtain a 
semiclassical hypergraph ag = (X, C). 

We claim that every weak* convergent increasing net (f~)a~D in J (ad)*  
is norm convergent. From this, it is immediate that j ( d ) * *  = J(ar  

Proof Observe that the net (fa)a~D increases and converges t o fweak*  
(in norm) ~r the net (f--fa)a~D decreases and converges to 0 weak* (in 
norm). Thus, it suffices to show that if (f6)a~D is a decreasing net, converging 
weak* to 0, then (f~)a~D converges in norm to 0. 

Let peK(ad) be defined by p(x, i)=l for i=1 ,2 .  Then, if 
~ j ( s t ) ,  II,~lJ - I, we have - p <  ~.__< p. Let e>  0. There exists 80~D such that 
If~(p)l < e for all 8>  &. Thus, if ) ~ e j ( d ) ,  IlZll -< 1, we have 

- e <f~(-p)  _<fa(/t) <-fs(P) < e 

for a >  &. So, Ilfall < e if 6_> &, and we conclude that (fa)a~D converges to 
0 in norm. This proves the claim. 

To show that this example disproves Cook's statement, we must show 
that ~/(~r is nonreflexive whenever A is infinite. Let 

~u= { ~ J ( a t ) :  ~(x, 1)+~(x, 2) =0 Vx~A} 

For each (oelo~(A) define T(q~ ) to be the unique element/2 ca//satisfying 
p (x, 1)= q~ (x) for all x eX. The map T establishes a linear homeomorphism 
between loo(A) and the closed subspace q / o f  J ( a t ) .  Thus, J ( a t )  is non- 
reflexive since it contains a nonreflexive subspace, q/. Since J(~r is a 
generating cone in j ( ~ ' ) * * ,  we have that ~(~)g+~,N--~(~)+ ~ ~ whenever 
A is infinite. �9 

We are now in a position to state positive results which follow from 
our examples. 

Theorem 1. Let U and V be ordered Banach spaces and suppose 
that there exists an order-preserving linear operator T: U--+ V mapping U 
homeomorphically into V. If  U~v*-U#~5 (resp. ** U+,N-- U+ ~ ) ,  then 
V**-  V # ~  (resp. ** V+,N-- V+ #~) .  
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The proof  follows easily since the adjoint operators T* and T** are 
weak* continuous and positive. The key step in the proof  is this observation, 
which is a straightforward consequence of the Hahn-Banach theorem: Let 
U and Vbe Banach spaces. If  T: U ---, V i sa  linear homeomorphism between 
U and a subspace of V, and T**: U** ~ V** is its second adjoint, then 
r**(~ ) ~ v ~ .  4~e c~. 

We can now prove our main result. 

Theorem 2. Let s~r = (X, (9) be a semiclassical hypergraph with IE[ _> 2 
for all E e  (9. Then the following statements are equivalent: 

( i )  * *  - r  +,N-- c ~ ( ~ )  + �9 
(ii) (9 is finite. 

Proof Assume that (9 = {E;: isI} is infinite. For each isI, let xi,1 and xi,2 
be distinct elements of  Eg. Following the procedure of Example 4, construct a 
semiclassical hypergraph N = ( Y ,  ~ )  from the set I (i.e., Y = I x  {1, 2}, E;= 
{(i, 1), (i, 2)} for ieI, and 2 = {E~: ieI} ). For every p ~ j ( N )  define T(p) to 
be the unique element of j ( d )  satisfying T(p)(x,,l) = p(i, 1) and T(p)(xi,2) = 
p(i, 2) for all isI, and T(p)(y)= 0 for all y s  0 ~  (E,.- {xi,1, x~,2} ). It is easy 
to see that the map T: J ( N )  ~ J ( d )  is order preserving and embeds j ( ~ )  
isometrically into J ( W ) .  From Theorem 1 and the fact that 
J ( N )  + .N-- J ( ~ )  + :~ ~ it follows that j (d)*+*u--  J ( ~ ' )  + r 2~. This proves 
that (i) ~ (ii). 

Assume now that (9 is finite. Then every p s i ( d )  is also a Jordan 
weight on the classical hypergraph N = (X, {X} ). Let I1" I1.~, and I!" lie denote 
the norms in J ( d )  and J ( N ) ,  respectively, and M the cardinality of (9. 
Then Ilpl[,~,< [Ip!l~e<_M[lpl],~, holds for all p~J(s~ ' ) .  Hence, J ( s J )  is homeo- 
morphically and order isomorphically embedded in J ( ~ ) .  If  we had 

j ( d )  + ~ j(d)*+*~ 

then Theorem 1 would imply that J ( ~ ) +  r ~7(~)~+~N. But this contradicts 
the fact that for classical hypergraphs, the space of Jordan weights coincides 
with the space of normal functionals. Hence, J ( ~ ' ) +  = j ( d ) * * u .  [] 
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